Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Generation of reactive oxygen species by hydroxypyridone compound/iron complexes.

Identifieur interne : 000116 ( Main/Exploration ); précédent : 000115; suivant : 000117

Generation of reactive oxygen species by hydroxypyridone compound/iron complexes.

Auteurs : Keiko Murakami [Japon] ; Masataka Yoshino [Japon]

Source :

RBID : pubmed:32615878

Abstract

Objectives: Prooxidant properties of iron-binding hydroxypyridone compounds including deferiprone and mimosine were analyzed. Methods: Hydroxypyridone/iron-dependent production of reactive oxygen species was evidenced by the inactivation of aconitase, the most sensitive enzyme to oxidative stress in permeabilized yeast cells. Results and Discussion: Deferiprone and mimosine produced reactive oxygen species in the presence of ferrous sulfate. The inactivation required sodium azide the inhibitor of catalase, and addition of TEMPOL, a scavenger of superoxide radical, protected aconitase from the inactivation, suggesting that the superoxide radical produced from the hydroxypyridone/iron complex is responsible for the inactivation of aconitase. A principal role of superoxide radical was further supported by the finding that the hydroxypyridone/iron complex can inactivate aconitase in the presence of cyanide the inhibitor of superoxide dismutase. Deferiprone and mimosine stimulated the Fe2+ oxidation, resulting in the one-electron reduction of oxygen to form superoxide anion, which can inactivate aconitase by oxidizing the prosthetic iron-sulfur cluster. Mimosine further stimulated the ascorbate/iron-dependent formation of 8-hydroxy-2'-deoxyguanosine in DNA. Conclusion: Biological toxicity of mimosine and deferiprone reported previously can be accounted for by the prooxidant properties of hydroxypyridone compounds: coordination complex with iron generates reactive oxygen species resulting in the disturbance of mitochondrial energy metabolism and DNA damage.

DOI: 10.1080/13510002.2020.1787662
PubMed: 32615878
PubMed Central: PMC7480593


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Generation of reactive oxygen species by hydroxypyridone compound/iron complexes.</title>
<author>
<name sortKey="Murakami, Keiko" sort="Murakami, Keiko" uniqKey="Murakami K" first="Keiko" last="Murakami">Keiko Murakami</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute</wicri:regionArea>
<wicri:noRegion>Nagakute</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yoshino, Masataka" sort="Yoshino, Masataka" uniqKey="Yoshino M" first="Masataka" last="Yoshino">Masataka Yoshino</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute</wicri:regionArea>
<wicri:noRegion>Nagakute</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32615878</idno>
<idno type="pmid">32615878</idno>
<idno type="doi">10.1080/13510002.2020.1787662</idno>
<idno type="pmc">PMC7480593</idno>
<idno type="wicri:Area/Main/Corpus">000074</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000074</idno>
<idno type="wicri:Area/Main/Curation">000074</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000074</idno>
<idno type="wicri:Area/Main/Exploration">000074</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Generation of reactive oxygen species by hydroxypyridone compound/iron complexes.</title>
<author>
<name sortKey="Murakami, Keiko" sort="Murakami, Keiko" uniqKey="Murakami K" first="Keiko" last="Murakami">Keiko Murakami</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute</wicri:regionArea>
<wicri:noRegion>Nagakute</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yoshino, Masataka" sort="Yoshino, Masataka" uniqKey="Yoshino M" first="Masataka" last="Yoshino">Masataka Yoshino</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute</wicri:regionArea>
<wicri:noRegion>Nagakute</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Redox report : communications in free radical research</title>
<idno type="eISSN">1743-2928</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<b>Objectives:</b>
Prooxidant properties of iron-binding hydroxypyridone compounds including deferiprone and mimosine were analyzed.
<b>Methods:</b>
Hydroxypyridone/iron-dependent production of reactive oxygen species was evidenced by the inactivation of aconitase, the most sensitive enzyme to oxidative stress in permeabilized yeast cells.
<b>Results and Discussion:</b>
Deferiprone and mimosine produced reactive oxygen species in the presence of ferrous sulfate. The inactivation required sodium azide the inhibitor of catalase, and addition of TEMPOL, a scavenger of superoxide radical, protected aconitase from the inactivation, suggesting that the superoxide radical produced from the hydroxypyridone/iron complex is responsible for the inactivation of aconitase. A principal role of superoxide radical was further supported by the finding that the hydroxypyridone/iron complex can inactivate aconitase in the presence of cyanide the inhibitor of superoxide dismutase. Deferiprone and mimosine stimulated the Fe
<sup>2+</sup>
oxidation, resulting in the one-electron reduction of oxygen to form superoxide anion, which can inactivate aconitase by oxidizing the prosthetic iron-sulfur cluster. Mimosine further stimulated the ascorbate/iron-dependent formation of 8-hydroxy-2'-deoxyguanosine in DNA.
<b>Conclusion:</b>
Biological toxicity of mimosine and deferiprone reported previously can be accounted for by the prooxidant properties of hydroxypyridone compounds: coordination complex with iron generates reactive oxygen species resulting in the disturbance of mitochondrial energy metabolism and DNA damage.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32615878</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1743-2928</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>25</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Redox report : communications in free radical research</Title>
<ISOAbbreviation>Redox Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Generation of reactive oxygen species by hydroxypyridone compound/iron complexes.</ArticleTitle>
<Pagination>
<MedlinePgn>59-63</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/13510002.2020.1787662</ELocationID>
<Abstract>
<AbstractText>
<b>Objectives:</b>
Prooxidant properties of iron-binding hydroxypyridone compounds including deferiprone and mimosine were analyzed.
<b>Methods:</b>
Hydroxypyridone/iron-dependent production of reactive oxygen species was evidenced by the inactivation of aconitase, the most sensitive enzyme to oxidative stress in permeabilized yeast cells.
<b>Results and Discussion:</b>
Deferiprone and mimosine produced reactive oxygen species in the presence of ferrous sulfate. The inactivation required sodium azide the inhibitor of catalase, and addition of TEMPOL, a scavenger of superoxide radical, protected aconitase from the inactivation, suggesting that the superoxide radical produced from the hydroxypyridone/iron complex is responsible for the inactivation of aconitase. A principal role of superoxide radical was further supported by the finding that the hydroxypyridone/iron complex can inactivate aconitase in the presence of cyanide the inhibitor of superoxide dismutase. Deferiprone and mimosine stimulated the Fe
<sup>2+</sup>
oxidation, resulting in the one-electron reduction of oxygen to form superoxide anion, which can inactivate aconitase by oxidizing the prosthetic iron-sulfur cluster. Mimosine further stimulated the ascorbate/iron-dependent formation of 8-hydroxy-2'-deoxyguanosine in DNA.
<b>Conclusion:</b>
Biological toxicity of mimosine and deferiprone reported previously can be accounted for by the prooxidant properties of hydroxypyridone compounds: coordination complex with iron generates reactive oxygen species resulting in the disturbance of mitochondrial energy metabolism and DNA damage.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Murakami</LastName>
<ForeName>Keiko</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yoshino</LastName>
<ForeName>Masataka</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-6497-8698</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Redox Rep</MedlineTA>
<NlmUniqueID>9511366</NlmUniqueID>
<ISSNLinking>1351-0002</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">DNA damage</Keyword>
<Keyword MajorTopicYN="N">Hydroxypyridone</Keyword>
<Keyword MajorTopicYN="N">deferiprone</Keyword>
<Keyword MajorTopicYN="N">hydrogen peroxide‌</Keyword>
<Keyword MajorTopicYN="N">iron</Keyword>
<Keyword MajorTopicYN="N">mimosine‌</Keyword>
<Keyword MajorTopicYN="N">reactive oxygen species</Keyword>
<Keyword MajorTopicYN="N">superoxide</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32615878</ArticleId>
<ArticleId IdType="doi">10.1080/13510002.2020.1787662</ArticleId>
<ArticleId IdType="pmc">PMC7480593</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1996 Oct 18;271(42):26026-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8824242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 May 5;267(13):8757-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1315737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 May 12;275(19):14064-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10799480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2006 Aug;19(4):429-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16841252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 1997 Feb 25;231(1):173-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9056424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2004 Jan 15;230(1):19-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14734161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Res. 2012 Feb;37(2):417-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21986805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Apoptosis. 2008 Jan;13(1):147-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18058236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;349:9-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11912933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1991 Jun 15;276 ( Pt 3):643-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1648348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anticancer Res. 2004 Mar-Apr;24(2B):755-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15161023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Metab. 1999 Dec;68(4):468-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10607476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hematology Am Soc Hematol Educ Program. 2010;2010:451-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21239834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 2000 May 31;459(4):299-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10844243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 1999 Feb 25;247(1):148-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10047457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lab Invest. 1985 Dec;53(6):599-623</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3906270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1990;186:1-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2172697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2015 Nov 23;20(11):20841-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26610453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2001 Dec 15;62(12):1579-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11755110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2015 Jan;78:118-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25451643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>NMR Biomed. 2017 Jun;30(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28272795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Z Naturforsch C J Biosci. 2000 Sep-Oct;55(9-10):849-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11098844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1980 Jul 1;105(2):407-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7006447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Dec;60(12):4268-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16349454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Neurol. 2008 Jun 16;8:20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18558000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Invest Dermatol. 2000 Nov;115(5):893-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11069629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Nov 25;269(47):29405-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7961919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Z Naturforsch C J Biosci. 2003 Sep-Oct;58(9-10):732-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14577640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Nanomedicine. 2006;1(1):111-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17722270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1998 Mar 1;257(1):40-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9512770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Appl Pharmacol. 1996 Aug;139(2):356-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8806853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Basic Clin Pharmacol Toxicol. 2005 Dec;97(6):392-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16364055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 May 15;264(14):7761-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2542241</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<country name="Japon">
<noRegion>
<name sortKey="Murakami, Keiko" sort="Murakami, Keiko" uniqKey="Murakami K" first="Keiko" last="Murakami">Keiko Murakami</name>
</noRegion>
<name sortKey="Yoshino, Masataka" sort="Yoshino, Masataka" uniqKey="Yoshino M" first="Masataka" last="Yoshino">Masataka Yoshino</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000116 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000116 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32615878
   |texte=   Generation of reactive oxygen species by hydroxypyridone compound/iron complexes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32615878" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020